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ABSTRACT 18	  

A fundamental goal of mineralogy and petrology is the deep understanding of mineral 19	  

phase relationships and the consequent spatial and temporal patterns of mineral 20	  

coexistence in rocks, ore bodies, sediments, meteorites, and other natural polycrystalline 21	  

materials. The multi-dimensional chemical complexity of such mineral assemblages has 22	  

traditionally led to experimental and theoretical consideration of 2-, 3-, or n-component 23	  

systems that represent simplified approximations of natural systems. Network analysis 24	  

provides a dynamic, quantitative, and predictive visualization framework for employing 25	  

“big data” to explore complex and otherwise hidden higher-dimensional patterns of 26	  
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diversity and distribution in such mineral systems. We introduce and explore applications 27	  

of mineral network analysis, in which mineral species are represented by nodes, while 28	  

coexistence of minerals is indicated by lines between nodes. This approach provides a 29	  

dynamic visualization platform for higher-dimensional analysis of phase relationships, 30	  

because topologies of equilibrium phase assemblages and pathways of mineral reaction 31	  

series are embedded within the networks. Mineral networks also facilitate quantitative 32	  

comparison of lithologies from different planets and moons, the analysis of coexistence 33	  

patterns simultaneously among hundreds of mineral species and their localities, the 34	  

exploration of varied paragenetic modes of mineral groups, and investigation of changing 35	  

patterns of mineral occurrence through deep time. Mineral network analysis, furthermore, 36	  

represents an effective visual approach to teaching and learning in mineralogy and 37	  

petrology.   38	  
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INTRODUCTION 45	  

Network analysis encompasses a powerful array of mathematical and visualization 46	  

methods that have found numerous applications in the presentation and interpretation of 47	  

“big data” in varied fields of technology and science (Kolaczyk 2009; Newman 2013). 48	  

Technological networks include the physical infrastructures of power grids (Pagani and 49	  

Aiello 2013), roads (Dong and Pentland 2009), and water supply systems (Hwang and 50	  

Houghtalen 1996; Geem 2010), as well as communications infrastructure (Pinheiro 51	  

2011), commercial distribution networks (Guimerá et al. 2005), and the Internet and other 52	  

information networks (Otte and Rousseau 2002). In the familiar realm of social 53	  

interactions, networks are used to quantify and visualize data in such diverse topics as the 54	  

spread of disease, the links among Facebook “friends,” the structure of terrorist 55	  

organizations, and connections among research collaborators (Otte and Rousseau 2002; 56	  

Abraham et al. 2010; Scott and Carrington 2011; Kadushin 2012). Network analysis has 57	  

been applied in biology to the study of ecosystem diversity (Banda et al. 2016), food 58	  

webs (Martinez 1992; Dunne et al. 2008), neural networks (Müller et al. 1995), 59	  

biochemical pathways (Costanzo et al. 2016), proteomics (Amital et al. 2004; Harel et al. 60	  

2015; Ueza et al. 2016), paleogeography (Sidor et al. 2013; Dunhill et al. 2016; Huang et 61	  

al. 2016), and evolution (Vilhena et al. 2013; Cheng et al. 2014; Corel et al. 2016). In 62	  

each of these network applications and more, the modeling, graphing, and analysis of 63	  

data reveals previously unrecognized patterns and behaviors in complex systems. 64	  

Qualitative network-like representations of minerals have been presented previously 65	  

(e.g., Christy et al. 2016). However, in spite of its utility and widespread application, 66	  

quantitative network analysis does not appear to have been applied to mineralogical 67	  
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problems. Here we introduce and apply network analysis to topics in mineralogy and 68	  

petrology—fields that are especially amenable to this approach because they consider 69	  

systems of numerous mineral species that co-exist in myriad combinations in varied 70	  

deposits. In particular, we demonstrate that network analysis of equilibrium mineral 71	  

assemblages has the potential to elucidate phase relationships in complex multi-72	  

dimensional composition space, while revealing previously hidden trends in spatial and 73	  

temporal aspects of mineral diversity and distribution.  74	  

     In this contribution we consider varied network representations of three contrasting 75	  

mineral systems: (1) common rock-forming minerals in intrusive igneous rocks; (2) 76	  

terrestrial minerals containing the element chromium; and (3) minerals containing the 77	  

element copper. These subsets of the more than 5200 mineral species approved by the 78	  

International Mineralogical Association’s Commission on New Minerals and Mineral 79	  

Names (IMA-CNMMN) exemplify the potential of network analysis to address 80	  

fundamental questions in mineralogy and petrology. 81	  

 82	  

EXAMPLES OF MINERAL NETWORKS  83	  

Minerals, whether in rocks, sediments, meteorites, or ore deposits, exist as 84	  

assemblages of coexisting species. Here we introduce mineral networks as a strategy to 85	  

represent and analyze the large and growing data resources related to these assemblages 86	  

with a variety of mathematical and graphical models—network “renderings” that are 87	  

available through open access sources. In each case mineral networks employ nodes (also 88	  

known as vertices), each corresponding to a mineral species. Some node pairs are 89	  

connected by links (also known as edges), which indicate that those two minerals are 90	  
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found together. Variations in the ways that nodes and links are represented highlight 91	  

different aspects of network relationships, as illustrated in the following examples. 92	  

 93	  

Fruchterman-Reingold Force-Directed Networks: Figure 1A illustrates a simplified 94	  

Fruchterman-Reingold force-directed network (Fruchterman and Reingold 1991; Csardi 95	  

and Nepusz 2006), representing 36 major rock-forming minerals that occur in 96	  

holocrystalline intrusive igneous rocks, as described in Alfred Harker’s classic Petrology 97	  

for Students (Harker 1964). Mineralogical descriptions of 77 igneous rocks, each with 1 98	  

to 6 major minerals (see Supplemental Information 1), provide the input data for this 99	  

visualization.  100	  

Note that many of the mineral names employed by Harker do not correspond to 101	  

approved IMA-CNMMN species. In some instances, such as “biotite,” “hornblende,” and 102	  

“tourmaline,” the names once commonly employed by optical petrologists have been 103	  

replaced by several related species (i.e., annite, fluorannite, siderophyllite, and 104	  

tetraferriannite for “biotite”). In the case of plagioclase feldspar, on the other hand, 105	  

Harker distinguishes six compositional variants—albite, oligoclase, andesine, labradorite, 106	  

bytownite, and anorthite—as opposed to the two end-member species albite and anorthite 107	  

recognized as valid species by the IMA-CNMMN.  108	  

In Figure 1, we created a simplified Fruchterman-Reingold force directed network 109	  

using the igraph package in R. We imported tabulated data on coexisting rock-forming 110	  

minerals into R as a data frame, which was then converted into a matrix object to enable 111	  

visualization using the igraph package. The igraph software enables a high level of 112	  

customization based on different network metrics. If “auto.layout” is used, then the 113	  
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package finds the best-suited algorithm based on the nodes and the number of links 114	  

between the nodes. After some preliminary analysis, we found the best-suited algorithm 115	  

to be the Fruchterman-Reingold force-directed network with self-loops removed. 116	  

A  117	  

B  118	  
Figure 1. (A) A Fruchterman-Reingold force-directed network diagram of 36 119	  
rock-forming minerals in holocrystalline intrusive igneous rocks. Each circular 120	  
node represents a rock-forming mineral and each link indicates pairs of 121	  
coexisting minerals in one or more rocks, as recorded in Harker (1964). (B) 122	  
Different types of igneous rocks appear as closely linked clusters, or “cliques,” 123	  
in this diagram. 124	  
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A consequence of these graphical procedures is that each igneous rock type, such as 125	  

granite, olivine basalt, or nepheline syenite, is embedded as localized, fully 126	  

interconnected subsets of nodes, or “cliques,” in this network (Figure 1B). For example, 127	  

the clique for minerals commonly found in granite includes quartz, muscovite, biotite, 128	  

orthoclase, albite, oligoclase, microcline, hornblende, and riebeckite, whereas olivine 129	  

basalt contains the clique of labradorite, augite, forsterite, and magnetite. Each of the 77 130	  

holocrystalline igneous rocks described by Harker (1964) is similarly embedded in this 131	  

network. Thus, this visualization in a sense represents the sweep of igneous petrology in a 132	  

single diagram—a result that hints at the large amount of multi-dimensional information 133	  

embedded in network representations, while also suggesting a visual opportunity for 134	  

teaching and learning about rocks and minerals.  135	  

  136	  

     Multi-Dimensional Scaling and Mineral Phase Topologies: A major research 137	  

objective of mineralogy and petrology for more than a century has been the elucidation of 138	  

mineral reaction series and phase equilibria (e.g., Bowen 1928; Yoder 1976). We 139	  

postulate that, because mineral networks are based on observed assemblages of 140	  

coexisting minerals, they must embed information on phase topologies and thus have the 141	  

potential to reveal phase relationships in systems not yet studied experimentally.  142	  

    To illustrate this potential we compiled coexisting mineral data on varied intrusive 143	  

igneous rocks from A Descriptive Petrography of the Igneous Rocks by Albert Johannsen 144	  

(1932-1938). We consolidated Johannsen’s multi-volume treatment with lists of mineral 145	  

modes into coexistence data for 51 primary rock-forming minerals in 729 crystalline 146	  
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igneous rocks (Supplemental Information 2). We used a variety of mineral network 147	  

renderings to study the patterns of coexisting phases in these rocks.  148	  

We initially employed multi-dimensional scaling in both three- and two-dimensional 149	  

renderings (https://github.com/lic10/DTDI-DataAnalysis; Figures 2 and 3). We created 150	  

the multi-dimensional scaling diagrams in Figures 2 and 3 using the “cmdscale” 151	  

command of the “stats” package in R (see https://github.com/lic10/DTDI-DataAnalysis). 152	  

We loaded the Johannsen igneous rock dataset (1932-1938) into R as a data frame, and 153	  

generated a second data frame as a symmetric 51×51 mineral matrix in which the value 154	  

recorded at matrix element ij represents the calculated distance, dij between nodes i and j. 155	  

Distances were projected on both 2- and 3-dimensional spaces. We used the “rgl” 156	  

package in R (Adler et al. 2016) to generate the 3D plot. In general, a network containing 157	  

N nodes requires a representation in (N – 1) dimensions to satisfy exactly all dij. 158	  

Consequently, multi-dimensional scaling diagrams of fewer than (N – 1) dimensions 159	  

employ distance least-squares analysis to distribute nodes as a projection from higher-160	  

dimensional space. 161	  

Familiar aspects of igneous mineral phase relationships are embedded in the multi-162	  

dimensional scaling diagram for igneous minerals. For example, Bowen (1928) proposed 163	  

a mineral reaction series for igneous rocks in which Mg-Fe minerals tend to crystallize in 164	  

a mafic cooling sequence (olivine à pyroxene à hornblende à biotite), whereas 165	  

plagioclase feldspars transition from more calcium-rich to more sodium-rich varieties. At 166	  

lower temperatures, late-stage minerals display a trend from alkali feldspar to muscovite 167	  

to quartz. These mineral crystallization trends are mimicked from left-to-right in the 168	  

multi-dimensional scaling diagram, as illustrated in Figure 2B.  169	  
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A  170	  

B  171	  
Figure 2. Multi-dimensional scaling diagrams of 51 rock-forming minerals in 172	  
729 igneous rocks tabulated by Johannsen (1932-1938). A. Three-dimensional 173	  
rendering (see Supplemental Information 3 for animation). B. Two-dimensional 174	  
rendering with superimposed Bowen’s reaction series (Bowen 1928), with the 175	  
mafic trend (red), plagioclase series (blue), and late-stage trend (green). 176	  
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      In addition, the topology of phase connections in mineral network diagrams mirrors 177	  

their phase relationships. For example, the “AFQ” ternary phase diagram for the system 178	  

anorthite (CaAl2Si2O8)—forsterite (Mg2SiO4)—silica (SiO2) illustrates that quartz may 179	  

coexist with anorthite and an intermediate mineral enstatite (MgSiO3), but not with 180	  

forsterite (Figure 3A). The topology of this phase diagram is also embedded in the multi-181	  

dimensional scaling diagram (Figure 3B).  182	  

A B   183	  
Figure 3. The topologies of phase diagrams, such as the anorthite-forsterite-184	  
quartz ternary solidus diagram (A), are mirrored in the topologies of mineral 185	  
network diagrams (B). Ternary diagram after Anderson (1915). 186	  

 187	  

     The phase relationships of igneous rocks have been well documented through decades 188	  

of studies in experimental petrology and thermochemical modeling, so the examples in 189	  

Figures 2 and 3 illustrate the conformity of network diagrams to established phase 190	  

relationships. However, numerous other mineralogical systems have not been 191	  

investigated in this detail. Much work remains to be done, but we postulate that mineral 192	  

network analysis of coexisting species in other complex natural chemical systems holds 193	  

the prospect of revealing unknown phase relationships through multi-dimensional 194	  

analysis. 195	  

 196	  
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 Cluster Analysis and Paragenetic Modes: Cluster analysis employs mineral network 197	  

data to identify subsets of closely related species—an approach that can reveal previously 198	  

unrecognized relationships among species. For example, we performed cluster analysis 199	  

on the 30 commonest terrestrial Cr minerals. We included minerals that satisfy three 200	  

criteria: (1) Cr occupies more than 50% of at least one symmetrically distinct crystal 201	  

lattice site; (2) the mineral occurs at three or more localities; and (3) the mineral co-202	  

occurs with other Cr minerals at two or more localities. In Figure 4 we applied the 203	  

Walktrap Algorithm (Pons and Latapy 2005) of the igraph package in R to mineral 204	  

coexistence data in mindat.org to detect clusters of closely related Cr minerals. This 205	  

approach is based on the analysis of random walks among links. Random walks are more 206	  

likely to stay within a single cluster because there are more links within a cluster than 207	  

links leading to different clusters. When we employ this algorithm to perform 5-step 208	  

random walks on the Cr mineral graph, the minerals separate naturally into four clusters, 209	  

each of which can be associated with a different paragenetic mode.  210	  

A valuable attribute of network diagrams is that the node representations can 211	  

incorporate additional dimensions of information through their size, color, shape, and 212	  

patterning. In Figures 4 and 5 if two minerals A and B occur at a and b localities, 213	  

respectively, and they co-occur at c localities, then the node diameters of A and B are 214	  

log2(a) and log2(b), and the distance of the link connecting A and B is [1 – c/min(a,b)], 215	  

where min(a,b) is the smaller of a and b. If A and B always occur together then we assign 216	  

a minimum distance of 0.1. 217	  

These minerals separate naturally into four clusters, the largest of which includes 17 218	  

Cr3+ minerals, all of which are high-temperature igneous, metamorphic, and 219	  
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hydrothermal species (group 1). Three additional clusters falling peripherally to this 220	  

central cluster include all Cr6+ minerals, seven of which (group 2) form from low-221	  

temperature, oxidized hydrothermal fluids leaching Cr-rich igneous rocks. The remaining 222	  

six Cr6+ minerals, which lie above the central cluster, are sedimentary species found in 223	  

soils (group 3) and in desert environments (group 4). Cluster analysis is consistent with 224	  

the observation that chromium in terrestrial Cr6+ minerals is probably sourced from Cr3+ 225	  

reservoirs, either through hydrothermal leaching or oxidative weathering (e.g., Liu et al. 226	  

2017). We conclude that cluster analysis holds promise for revealing patterns of 227	  

diagenesis and distribution in a variety of mineral systems. 228	  

 229	  

Figure 4. Cluster analysis of 30 common chromium-bearing minerals reveals 230	  
segregation into 4 groups. The central cluster (group 1) includes 17 Cr3+ species 231	  
formed through igneous, metamorphic, or hydrothermal processes. The left-hand 232	  
cluster (group 2) includes 7 Cr6+ species formed through hydrothermal 233	  
alteration, whereas the two smaller clusters (groups 3 and 4) include chromate 234	  
minerals precipitated in soils and desert environments.  235	  
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Force-Directed Mineral Graphs: An important potential contribution of mineral 236	  

network analysis lies in the simultaneous visualization and study of relationships 237	  

among scores or hundreds of minerals that are related by composition, age, tectonic 238	  

setting, deposit type, or numerous other variables. Force-directed graphs (Figure 5), 239	  

which represent the distribution of nodes as a dynamic network with balanced spring-240	  

like interactions among nodes, are particularly useful in this regard. We generate these 241	  

graphs by algorithms that run through a number of iterations, displacing the nodes 242	  

according to fictive attractive and repulsive forces that they exert on each other, until a 243	  

layout is found that minimizes the “energy” of the system and possibly satisfies other 244	  

constraints such as drawing connected nodes at certain separations. These methods are 245	  

implemented in highly customizable modules in multiple programming languages, 246	  

such as Javascript and R, making it possible to render the graphs through a number of 247	  

interfaces including web browsers.  248	  

In Figure 5, we created the browser-based force-directed graphs using the D3 4.0 249	  

d3-force module, which simulates physical forces using velocity Verlet integration 250	  

(Verlet 1967) and implements the Barnes–Hut approximation (Barnes and Hut 1986) 251	  

for performing n-body simulations, similar to those of molecular or planetary systems. 252	  

For each of the three graphs we compiled a symmetric matrix whose non-diagonal 253	  

elements represent the number of localities where two minerals coexist and whose 254	  

diagonal elements represent the total number of localities at which each mineral is 255	  

found. As a preliminary step we imported these data into R as data frames and 256	  

converted into two lists, one with nodes representing all the minerals in the dataset, 257	  

and the other with links representing coexistence relationships between the nodes. We 258	  
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created the list of nodes by extracting the row or column names of the data frame, each 259	  

of which represents a mineral, and we produced the list of links by iterating over the 260	  

upper or lower triangle of the matrix and copying the row name, column name, and 261	  

computing a coexistence metric between the two minerals. We added additional fields 262	  

to the nodes list, such as mineral compositions, the number of localities at which the 263	  

mineral occurs, and/or structural classification of the mineral. 264	  

We combined these two lists and converted them into a JSON (Javascript Object 265	  

Notation) file, which is stored along with a web page written in HTML (Hypertext 266	  

Markup Language) and Javascript that uses functions from the D3 4.0 library. The 267	  

data file is read from the file system and rendered when the page is opened in a web-268	  

browser. Our Javascript code generates the layout by performing a many body (n-269	  

body) simulation and constraining edge lengths to values that equal the coexistence 270	  

metric multiplied by a constant to make the connections more apparent. We set node 271	  

sizes to the binary logarithm of the abundance value of a mineral in the cases of Cu 272	  

and igneous rocks diagrams, and the actual abundance values in the Cr diagram. Node 273	  

colors in Figure 5 variously indicate the structural classification of the minerals 274	  

(igneous network), paragenetic mode (Cr network), and composition (Cu network).   275	  

The mineral network diagrams in this study require data on coexisting minerals in 276	  

individual rocks or from individual localities. We manually generated spreadsheets of 277	  

coexisting minerals in igneous rocks from text and tables in Harker (1964) and 278	  

Johannsen (1932-1938) as presented in Supplemental Information 1 and 2. We used a 279	  

PERL script to construct spreadsheets of coexisting chromium and copper minerals, 280	  

which are generated automatically from data on coexisting species from localities 281	  
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recorded in the crowd-sourced mineral website mindat.org. We define Cr- or Cu-282	  

minerals as those reported in the official IMA list of minerals at rruff.info/ima. For 283	  

each pair of coexisting minerals we generated a file that contains all localities at which 284	  

those two minerals occur. A second program reads the assembled files to obtain the 285	  

number of localities at which each pair occurs and outputs these counts in matrix form.     286	  

A  287	  

B       288	  
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C  289	  
Figure 5. Force-directed network graphs of minerals. A. 51 rock-forming 290	  
igneous minerals sorted by structural groups. B. 58 chromium minerals sorted 291	  
by paragenetic mode. C. 664 copper minerals sorted by composition. See 292	  
Supplemental Information 4, 5, and 6, respectively, for animations of these 293	  
three dynamic graphs. 294	  

 295	  

 An important feature of browser-based force-directed graphs is that they can be 296	  

manipulated with a mouse—individual nodes can be “pulled aside,” thus deforming the 297	  

network and illustrating the number and nature of links to other nodes (see movies in 298	  

Supplemental Information 4, 5, and 6). Figure 5 presents static images of three 299	  

contrasting force-directed graphs: (1) 51 common rock-forming igneous minerals; (2) 58 300	  

terrestrial minerals of chromium; and (3) 664 minerals of copper.  301	  
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     In Figure 5A, which represents connections among 51 igneous minerals, the node 302	  

colors indicate broad compositional groups (see figure for key). Note that while colors 303	  

are largely mixed, the red (quartz and feldspar minerals) and orange (feldspathoids and 304	  

zeolite mineral) nodes tend to concentrate near the lower and upper halves of the 305	  

network, respectively—a feature that reflects the natural avoidance of quartz and 306	  

feldspathoids. Node colors in Figure 5B for chromium minerals correspond to 307	  

paragenetic modes; note the strong clustering of nodes by color—an observation that 308	  

parallels the cluster analysis in Figure 4. Node colors in Figure 5C for copper minerals 309	  

indicate mineral compositions separated according to the presence or absence of sulfur or 310	  

oxygen. Strong segregation by color reveals clustering according to these compositional 311	  

variables for sulfides, sulfates, and oxygen-bearing species. 312	  

      313	  

Network metrics: An important attribute of networks is the ability to compare and 314	  

contrast their topological characteristics through the use of many quantitative network 315	  

metrics (e.g., Newman 2013; Table 1). For example, a network’s edge density D, defined 316	  

as the ratio of the number of observed links to the maximum possible number of links, 317	  

quantifies the extent to which a network is interconnected. For a network with N nodes 318	  

and L links:   319	  

                                                        D = 2L/[N(N – 1)].                                    [Equation1] 320	  

D can vary from 0 in a network with no links to 1 for a fully connected network. For 321	  

mineral networks, 0 means every mineral occurs by itself, whereas 1 means every 322	  

mineral co-occurs with every other mineral.  323	  
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Freeman network centralization or degree centralization, FNC, is one of several 324	  

measures of how many nodes play central roles in the network. In a network of N nodes, 325	  

degree centralization for each node i is the number of links to other nodes, or node 326	  

degree, deg(i). Freeman network centralization is defined as: 327	  

                                                      ,                      [Equation 2] 328	  

in which degmax is the maximum degree node. FNC can vary from 0 to 1; in a mineral 329	  

network, low centralization indicates that minerals are uniformly interconnected, whereas 330	  

high centralization indicates that only one or a few minerals are highly connected. 331	  

Transitivity, T, is defined by the ratio of the number of loops of length three and the 332	  

number of paths of length two in a network. In mineral networks, 0 means that minerals 333	  

co-occur only as pairs and 1 means that each mineral co-occurs with at least two others.  334	  

Diameter, d, of a network with N nodes is defined as the maximum value of the 335	  

shortest path (i.e., “degree of separation”) between any two nodes in the network, as 336	  

determined by the number of edges and the average edge length between the two nodes.  337	  

Mean distance, MD, of a network with N nodes indicates the average path length, 338	  

calculated from the shortest paths between all pairs of nodes. In a mineral network, MD 339	  

represents the average separation between mineral pairs. 340	  

The three force-directed mineral networks illustrated in Figure 5 differ significantly in 341	  

their network metrics. The igneous mineral network (Figure 5A) is relatively dense with 342	  

high transitivity (D = 0.64; T = 0.77), while the network is decentralized (FNC = 0.34), 343	  

and compact (d = 1.1; MD = 1.36). Two minerals, biotite and magnetite, have links to all 344	  

other minerals; thus, manipulating the nodes for biotite and magnetite (see movie in 345	  

Supplemental Information 4) results in a rapid return to the initial equilibrium network 346	  

FNC = degmax− deg(i)
(N −1)(N − 2)i=1

N∑
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configuration with those nodes appearing near the center of the network. Manipulation of 347	  

quartz (near the bottom of the network) and nepheline (near the top), by contrast, 348	  

illustrates the avoidance of those two minerals, which do not co-occur in igneous rocks. 349	  

We postulate that the relatively high density and low diameter of this network are 350	  

manifestations of high-temperature equilibrium associated with intrusive igneous rocks, 351	  

for which a relatively few common rock-forming minerals occur in several lithologies. 352	  

 353	  

    Table 1. Network metrics for force-directed graphs (see Figure 5)     354	  

Mineral System  Density  Centralization   Transitivity  Diameter  Mean Distance  355	  

Igneous minerals  0.64    0.34     0.77   1.1    1.36   356	  

Cr minerals   0.05    0.33     0.44   6.0    2.65   357	  

Cu minerals   0.12    0.68     0.48   4.0    1.93    358	  

 359	  

     The network for 58 terrestrial chromium minerals (Figure 5B) contrasts with that for 360	  

igneous minerals in that it possesses much lower density and transitivity (D = 0.05; T = 361	  

0.48), relatively low centrality (C = 0.33), and greater diameter and mean distance (d = 6; 362	  

MD = 2.65). These values are consistent with the cluster analysis (Figure 4), which 363	  

revealed four groups of minerals that are largely separate from each other. A striking 364	  

feature of this Cr mineral network is the segregation of nodes by colors, which represent 365	  

paragenetic modes (see figure caption). As revealed by cluster analysis, chromium 366	  

minerals occurring through weathering, formed during metamorphism, found in 367	  

sediments, or crystallized through igneous processes tend not to co-occur and thus appear 368	  

as somewhat isolated clusters in Figure 5B. On the other hand, hydrothermal Cr minerals 369	  

are much more interconnected with phases formed through other paragenetic processes. 370	  
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Such complex relationships among 58 minerals become obvious through manipulation of 371	  

a force-directed graph (see movie in Supplemental Information 5) and exemplify the 372	  

wealth of information contained in these network diagrams.  373	  

     Copper minerals (Figure 5C) provide a third, contrasting example of a mineral 374	  

network with relatively low density and transitivity (D = 0.12; T = 0.44), high centrality 375	  

(FNC = 0.68), and intermediate diameter and mean distance (d = 4; MD = 1.93). Aspects 376	  

of the co-existence of copper minerals are revealed in Figure 5C, which is colored 377	  

according to the presence or absence of the two principal anions, O and S. A strong 378	  

degree of segregation is seen for sulfides (red), sulfates (orange), and minerals with O but 379	  

not S (blue). By contrast, copper minerals with neither O nor S (green) are much more 380	  

widely distributed, as they are found associated with a variety of other copper minerals. 381	  

Manipulations of the nodes for the two most interconnected copper minerals, chalcopyrite 382	  

and malachite, reveal connections to all regions of the graph and result in significant 383	  

distortion of the entire network (Supplemental Information 6). Manipulation of the node 384	  

for native copper, on the other hand, shows greater connectivity to oxides and sulfates 385	  

than to sulfides—an insight not readily obvious from tables of coexisting mineral species 386	  

(and a finding that will be explored in more detail in a forthcoming study). The ability to 387	  

view and interrogate simultaneously and dynamically the relationships among hundreds 388	  

of mineral species underscores the power of force-directed mineral network 389	  

visualizations. 390	  

 391	  

 Bipartite Networks: Bipartite networks incorporate two types of nodes and thus reveal 392	  

information complementary to the previous examples (e.g., Asratian et al. 1998). Of 393	  



	   21	  

special interest in mineralogy are network diagrams that include nodes for both mineral 394	  

species and their localities, with links connecting localities to mineral species found at 395	  

those localities. In Figures 6A and 6B we present bipartite networks for copper minerals 396	  

for two contrasting geological time intervals, from the Archean Eon (4.0 to 2.5 Ga) and 397	  

the Cenozoic Era (543 Ma to present), respectively. We color mineral nodes according to 398	  

mineral compositions with respect to the presence or absence of oxygen and sulfur, as in 399	  

Figure 5C. Locality nodes, which in this case represent countries or broad geographic 400	  

regions, appear in black.  401	  

A  402	  
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B  403	  

Figure 6. Bipartite networks for copper minerals from the Archean Eon (A) and Cenozoic 404	  
Era (B) reveal distinctive patterns of mineral diversity and distribution through space and 405	  
time. Black nodes represent localities, whereas colored nodes represent mineral species 406	  
linked to those localities. The distinctive pattern of an “O” or “U”-shape arrangement of 407	  
localities with relatively few common minerals in the center area and a greater number of 408	  
rare minerals in peripheral positions conforms to a Large Number of Rare Events 409	  
frequency distribution (Hazen et al. 2015; Hystad 2015). Note also the increase in 410	  
mineral diversity, as well as the evolution of mineral compositions, from A to B. 411	  
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 412	  
As with the previously demonstrated force-directed mineral networks, we employed 413	  

mineral/locality data to produce the bipartite graphs. We imported data into R where two 414	  

sets of nodes were extracted, one containing mineral species and the other containing the 415	  

localities where these minerals occur. We combined the two sets of nodes into one list 416	  

and added an attribute to each item in the list, determining its type as either mineral or 417	  

locality. We then generated a list of links from the data such that each link connects a 418	  

mineral species to a locality. Following the same procedure as with the force-directed 419	  

graphs created using the D3 4.0 library, we combined the data structures representing the 420	  

nodes and links into a JSON file linked to an HTML page such that the diagrams can be 421	  

rendered and manipulated in a web browser. 422	  

These striking bipartite networks provide simultaneous visual representations of data 423	  

on the diversity and abundances of mineral species, as well as their geographical 424	  

distributions, compositional characteristics, and geological ages. As such, these diagrams 425	  

demonstrate the potential of network analysis to reveal previously unrecognized aspects 426	  

of mineral evolution and mineral ecology. Insights from these visualizations include: 427	  

• In both networks the nodes of the force-directed graph self-organize into a 428	  

distinctive pattern with black locality nodes forming an “O” or “U”-shape 429	  

arrangement. The commoner minerals, those found at numerous localities, appear 430	  

as colored nodes near the center of these diagrams, whereas a significantly greater 431	  

number of rare minerals that occur at only one or two localities plot as colored 432	  

nodes in clusters and “fans” of minerals arranged around the periphery of the 433	  

diagram. This unanticipated elegant geometry is the visual manifestation of a 434	  
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Large Number of Rare Events (LNRE) frequency distribution that characterizes 435	  

Earth’s near-surface mineralogy (Hazen et al. 2015; Hystad et al. 2015).  436	  

• The Archean bipartite network (Figure 6A), with 97 Cu minerals from 45 broad 437	  

geographical localities, reveals that sulfide minerals dominated copper 438	  

mineralogy prior to the Great Oxidation Event (e.g., Hazen et al. 2008; Canfield 439	  

2014; Lyons et al. 2014). Sulfides represent 17 (74%) of the 23 common Archean 440	  

copper minerals located “inside” the ring of black locality nodes and 32 (50%) of 441	  

the 64 rare minerals located around the periphery. Note also the relative paucity of 442	  

sulfate minerals—only 7 species (7%), all of them rare, out of 97 Archean copper 443	  

minerals. 444	  

• The Cenozoic bipartite network for copper minerals contrasts with that of the 445	  

Archean Eon in a number of respects. The significant increase in the number of 446	  

identified mineral species (colored nodes), from 97 to almost 400, is to be 447	  

expected when comparing Earth’s recent mineralogy with the scant record of 448	  

rocks more than 2.5 billion years old. However, there are also striking and 449	  

previously unrecognized differences in the distributions of mineral compositions 450	  

from these two geological intervals. Sulfide minerals (red nodes) continue to 451	  

make up a significant fraction of common species located near the center of the 452	  

diagram. Of the approximately 100 mineral nodes located within the “U” of black 453	  

locality nodes, more than 40 are sulfide minerals. Furthermore, most of these 454	  

phases are concentrated at the “bottom” of the “U”—a position representing the 455	  

most widely distributed copper minerals. Of the remaining common Cu phases in 456	  

the central region, most are carbonate, phosphate, and other minerals that contain 457	  
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oxygen but not sulfur (blue nodes concentrated in the “upper” region inside the 458	  

“U”), perhaps reflecting the oxygenation by photosynthesis of Earth’s atmosphere 459	  

and oceans.  460	  

• Peripheral (i.e., rare) copper minerals from the Cenozoic Era differ markedly in 461	  

composition from those of the Archean Eon. Sulfide minerals account for only 462	  

about 50 (<20%) of the more than 280 rare species, whereas at least 210 (~75%) 463	  

oxygen-bearing minerals, 60 of them sulfates, decorate the diagram in sprays and 464	  

clusters of phases known from only one or two geographic regions.   465	  

These intriguing insights regarding copper mineral evolution and ecology have been 466	  

hidden among large data tables of more than 600 species from more than 10,000 467	  

localities, representing more than 100,000 individual mineral-locality data 468	  

(rruff.inof/ima; mindat.org). Research now in progress will investigate these intriguing 469	  

trends for copper mineral evolution and ecology in greater detail.  470	  

  471	  

CONCLUSIONS 472	  

     Network analysis provides mineralogists and petrologists with a dynamic, multi-473	  

dimensional, quantitative visualization approach to explore complex and otherwise 474	  

hidden patterns of diversity and distribution in systems of numerous minerals—475	  

information that heretofore has been buried in large and growing mineral data resources. 476	  

Open access data repositories now document more than 5200 mineral species 477	  

(rruff.info/ima), from 275,000 localities, incorporating approximately one million 478	  

mineral/locality data (mindat.org). It is thus possible to employ mineral network 479	  

visualizations to investigate quantitatively patterns of coexistence, phase relationships, 480	  
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reaction pathways, network metrics, frequency distributions, and deep-time evolution of 481	  

virtually any mineral group.  482	  

We suggest that further investigation of mineral networks will reveal previously 483	  

hidden patterns of species coexistence and clustering based, for example, on structure 484	  

type, chemistry, age, hardness and other mechanical properties, redox state, depth and 485	  

temperature of formation, and paragenetic mode. Mineral metadata, furthermore, permit 486	  

exploration of mineral subsets through filtering by geographic region, tectonic setting, 487	  

co-occurrence with varied biozones, economic resources, environmental characteristics, 488	  

and other key parameters. In addition, networks are now being generated for minerals on 489	  

Mars, the Moon, and Vesta (as represented by “HED” achondrite meteorites) with the 490	  

motivation to compare and contrast mineral evolution and ecology of different planets 491	  

and moons.  492	  

Given the inherent beauty and richness of these visualization tools, it is perhaps easy 493	  

to become distracted from the varied, multi-dimensional, and as yet unexplored aspects of 494	  

mineralogy that networks promise to illuminate. We look to a future when the 495	  

consolidated network of all 5200 mineral species, distributed among hundreds of 496	  

thousands of localities, will offer an unparalleled research tool. We conclude that mineral 497	  

network analysis, by combining the potential of big data mineralogy with a dynamic and 498	  

accessible visual aesthetic, represents a powerful new method to explore fundamental 499	  

problems in mineralogy and petrology. 500	  

 501	  

 502	  

 503	  



	   27	  

ACKNOWLEDGEMENTS 504	  

We thank Alex Pires and Daniel Hummer for help in database development and 505	  

Sophie Kolankowski, Benno Lee, Marshall X. Ma, Han Wang, Stephan Zednik, and Hao 506	  

Zhong for assistance in the development of varied visualization methods. Craig Schiffries 507	  

and two anonymous reviewers provided thoughtful comments and suggestions. This work 508	  

was supported by the W. M. Keck Foundation’s Deep-Time Data Infrastructure project, 509	  

with additional support by the Deep Carbon Observatory, the Alfred P. Sloan Foundation, 510	  

a private foundation, the Carnegie Institution for Science, and NASA NNX11AP82A, 511	  

Mars Science Laboratory Investigations. Any opinions, findings, and conclusions or 512	  

recommendations expressed in this material are those of the authors and do not 513	  

necessarily reflect the views of the National Aeronautics and Space Administration. 514	  

  515	  



	   28	  

REFERENCES 516	  

Abraham, A., Hassanien, A.-E., and Snasel, V. [Editors] (2010) Computational Social 517	  

Network Analysis: Trends, Tools and Research Advances. Springer, New York. 518	  

Adler, D, et al. (2016). rgl: 3D Visualization Using OpenGL. R package version 519	  

0.95.1441. http://CRAN.R-project.org/package=rgl 520	  

Amital, G., Shemesh, A., Sitbon, E., Shklar, M., Netanely, D., Venger, I., and 521	  

Pietrokovski, S. (2004) Network analysis of protein structures identifies functional 522	  

residues. Journal of Molecular Biology, 344, 1135-1146. 523	  

Anderson, O. (1915) The system anorthite-forsterite-silica. American Journal of Science, 524	  

39, 407-454. 525	  

Asratian, A.S., Denley, T.M.J., and Häggkvist, R. (1998) Bipartite Graphs and their 526	  

Applications. Cambridge University Press, New York. 527	  

Banda-R, K. et al. (2016) Plant diversity patterns in neotropical dry forests and their 528	  

conservation implications. Science, 353, 1383-1387. 529	  

Barnes, J. and Hut, P. (1986) A hierarchical O(N log N) force-calculation algorithm. 530	  

Nature, 324, 446-449. 531	  

Bowen, N.L. (1928) The Evolution of the Igneous Rocks. Princeton University Press, 532	  

New Jersey. 533	  

Canfield, D. (2014) Oxygen: A Four-Billion Year History. Princeton University Press, 534	  

New Jersey. 535	  

Cheng, S., Karker, S., Bapteste, E., Yee, N., Falkowski, P., and Bhattacharya, D. (2014) 536	  

Sequence similarity network reveals the imprints of major diversification events in the 537	  

evolution of microbial life. Frontiers in Ecology and Evolution, 2, 72. Doi: 538	  



	   29	  

10.3389/fevo.2014.00072 539	  

Christy, A.G., Mills, S.J., Kampf, A.R., Houseley, R.M., Thorne, B., and Marty, J. (2016) 540	  

The relationship between mineral composition, crystal structure and paragenetic 541	  

sequence: the case of secondary Te mineralization at the Bird Nest druft, Otto 542	  

Mountain, California, USA. Mineralogical Magazine, 80, 291-310. 543	  

Corel, E., Lopez, P., Méheust, R., and Bapteste, E. (2016) Network-thinking: Graphs to 544	  

analyze microbial complexity and evolution. Trends in Microbiology, 24, 224-237. 545	  

DOI: 10.1016/j.tim.2015.12.003 546	  

Costanzo, M. et al. (2016) A global genetic interaction network maps a wiring diagram of 547	  

cellular function. Science, 353, 1381. 548	  

Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network 549	  

research. InterJournal, Complex Systems, 1695, 1-9. 550	  

Dong, W. and Pentland, A. (2009) A network analysis of road traffic with vehicle 551	  

tracking data. In Proceedings of the American Association of Artificial Intelligence, 552	  

Spring Symposium, Human Behavior Modeling, Palo Alto CA, pp.7-12. 553	  

Dunhill, A.M., Bestwick, J., Narey, H., and Sciberras, J. (2016) Dinosaur 554	  

biogeographical structure and Mesozoic continental fragmentation: A network–based 555	  

approach. Journal of Biogeography. doi: 10.1111/jbi.12766 (in press). 556	  

Dunne, J.A., Williams, R.J., Martinez, N.D., Wood, R.A., and Erwin, D.H. (2008) 557	  

Compilation and network analysis of Cambrian Food webs, PLoS Biology, 6, 693-558	  

708. 559	  

Fruchterman, T.M.J. and Reingold, E.M. (1991) Graph drawing by force-directed 560	  

placement. Software: Practice and Experience, 21, 1129-1164. 561	  



	   30	  

Geem, Z.W. (2010) Optimal cost design of water distribution networks using harmony 562	  

search. Engineering Optimization 38, 259-277. 563	  

Guimerá, R., Mossa, S., Turschi, A., and Amaral, L.A.N. (2005) The worldwide air 564	  

transportation metwork: anomalous centrality, community structure, and cities’ global 565	  

roles. Proceedings of the National Academy of Sciences USA, 102, 7794-7799. 566	  

Harel, A., Karkar, S., Cheng, S., Falkowski, P.G., and Bhattacharya, D. (2015) 567	  

Deciphering primordial cyanobacterial genome functions from protein network 568	  

analysis. Current Biology, 25, 628-634. 569	  

Harker, A. (1964) Harker’s Petrology for Students, 8th edition, revised. Cambridge 570	  

University Press, New York. 571	  

Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., M., J., McCoy, T.L., Sverjensky, 572	  

D.A., and Yang, H. (2008) Mineral evolution. American Mineralogist, 93, 1693-1720. 573	  

Hazen, R.M., Grew, E.S., Downs, R.T., Golden, J., and Hystad, G. (2015) Mineral 574	  

ecology: Chance and necessity in the mineral diversity of terrestrial planets. Canadian 575	  

Mineralogist, 53, 295-323. DOI: 10.3749/canmin.1400086. 576	  

Huang, B., Zhan, R.-B., and Wang, G.-X. (2016) Recovery brachiopod associations from 577	  

the lower Silurian of South China and their paleoecological implications. Canadian 578	  

Journal of Earth Science, 53, 674-679. 579	  

Hwang, N. and Houghtalen, R. (1996) Fundamentals of Hydraulic Engineering Systems. 580	  

Prentice Hall, Upper Saddle River, New Jersey. 581	  

Hystad, G., Downs, R.T., and Hazen, R.M. (2015) Mineral frequency distribution data 582	  

conform to a LNRE model: Prediction of Earth’s “missing” minerals. Mathematical 583	  

Geosciences, 47, 647-661. 584	  



	   31	  

Johannsen, A. (1932-1938) A Descriptive Petrography of the Igneous Rocks: 4 Volumes. 585	  

University of Chicago Press, Illinois.  586	  

Kadushin, C. (2012) Understanding Social Networks. Oxford University Press, New 587	  

York. 588	  

Kolaczyk, E.D. (2009) Statistical Analysis of Network Data. Springer, New York. 589	  

Liu, C., Hystad, G., Golden, J.J., Hummer, D.R., Downs, R.T., Morrison, S.M., Grew, 590	  

E.S., and Hazen, R.M. (2017) Chromium mineral ecology. American Mineralogist, in 591	  

press. 592	  

Lyons, T.W., Peinhard, C.T., and Planavsky, N.J. (2014) The rise of oxygen in Earth’s 593	  

early ocean and atmosphere. Nature, 506, 307-314.  594	  

Martinez, N.D. (1992) Constant connectance in community food webs. American 595	  

Naturalist, 139, 1208-1212. 596	  

Müller, B., Reinhardt, J., and Strickland, M.T. (1995) Neural Networks: An Introduction. 597	  

2nd Edition. Springer, New York. 598	  

Newman, M.E.J. (2013) Networks: An Introduction. Oxford University Press, New York. 599	  

Otte, E. and Rousseau, R. (2002) Social network analysis: a powerful strategy, also for 600	  

the information sciences. Journal of Information Science, 28, 441-453. 601	  

Pagani, G.A. and Aiello, M. (2013) The power grid as a complex network: A survey. 602	  

Physica A, 392, 2688-2700. 603	  

Pinheiro, C.A.R. (2011) Social Network Analysis in Telecommunications. Wiley, 604	  

Hoboken, New Jersey. 605	  

Pons, P, and Latapy, M. (2005) Computing communities in large networks using random 606	  

walks. International Symposium on Computer and Information Sciences.  Springer, 607	  



	   32	  

New York. 608	  

Scott, J. and Carrington, P.J. (2011) The SAGE Handbook of Social Network Analysis. 609	  

SAGE: Los Angeles, California. 610	  

Sidor, C.A., Vilhena, D.A., Angielczyk, K.D., Huttenlocker, A.K., Nesbitt, S.J., Peecook, 611	  

B.R., Steyer, J.S., Smith, R.M.H., and Tsuji, L.A. (2013) Provincialization of 612	  

terrestrial faunas following the end–Permian mass extinction. Proceedings of the 613	  

National Academy of Sciences USA, 110, 8129–8133. doi: 10.1073/pnas.1302323110. 614	  

Uezu, A., Kanak, D.J., Bradshaw, T.W.A., Soderblom, E.J., Catavero, C.M., Burette, 615	  

A.C., Weinberg, R.J., and Soderling, S.H. (2016) Identification of an elaborate 616	  

complex mediating postsynaptic inhibition. Science, 353, 1123-1128. 617	  

Verlet, L. (1967) Computer "Experiments" on Classical Fluids. I. Thermodynamical 618	  

Properties of Lennard−Jones Molecules. Physical Review, 159, 98-103. 619	  

Vilhena, D.A., Harris, E.B., Bergstrom, C.T., Maliska, M.E., Ward, P.D., Sidor, C.A., 620	  

Strömberg, C.A.E., and Wilson, G.P. (2013) Bivalve network reveals latitudinal 621	  

selectivity gradient at the end–Cretaceous mass extinction. Science Reports, 3. doi: 622	  

10.1038/srep01790. 623	  

Yoder, H.S. Jr (1976) Generation of Basaltic Magma. National Academy of Sciences 624	  

Washington DC. 625	  

  626	  



	   33	  

Supplemental Information 627	  

 628	  

Supplemental Information Contains: 629	  

1. Excel file of 36 minerals from 76 intrusive igneous rocks, as extracted from Harker 630	  

(1964). 631	  

2. Excel file of 51 minerals from 725 intrusive igneous rocks, as extracted from 632	  

Johannsen (1932-1938). 633	  

3. Movie of the rotation of the 3-dimensional multi-dimensional scaling diagram of rock-634	  

forming minerals in intrusive igneous rocks. 635	  

4. Movie of the manipulation of nodes for biotite, magnetite, quartz, and nepheline in the 636	  

force-directed graph of intrusive igneous minerals. 637	  

5. Movie of the manipulation of nodes for chromite and crocoite in the force-directed 638	  

graph of terrestrial chromium minerals. 639	  

6. Movie of the manipulation of nodes for chalcopyrite, malachite, and copper in the 640	  

force-directed graph of the 242 most common copper minerals (≥ 50 localities). 641	  


