
Responding to Climate Change

Gloom & Doom of Climate Change

What Can Be Done?

Final Project Stuff.

ASSESSING THE IMPACT OF CLIMATE CHANGE ...

Hypothetical....

Rob could lose a few pounds.

Possible Solutions? (good points & bad points)

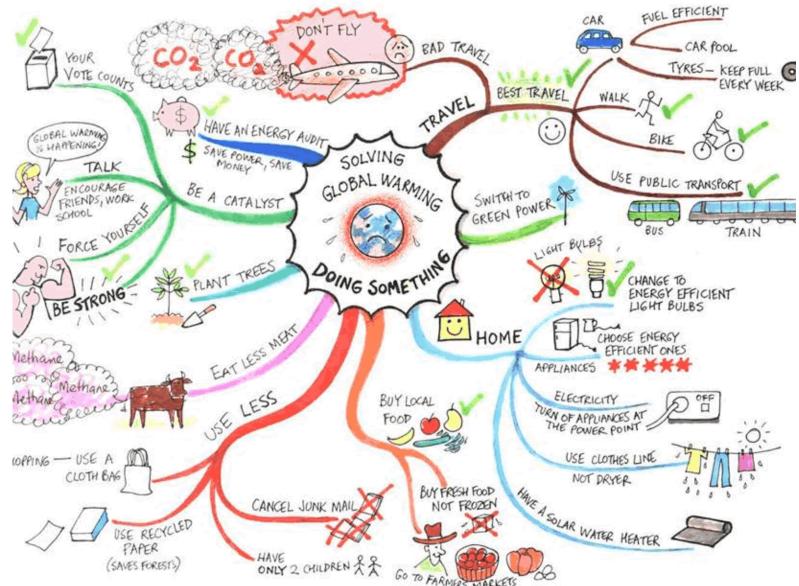
Change Habits

Medical Procedures

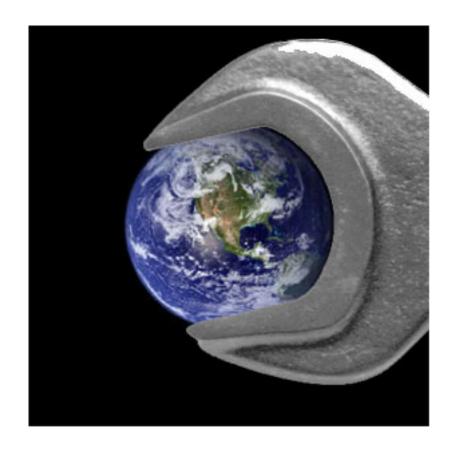
- no more NYS Wieners

- Lipo-suck 4000

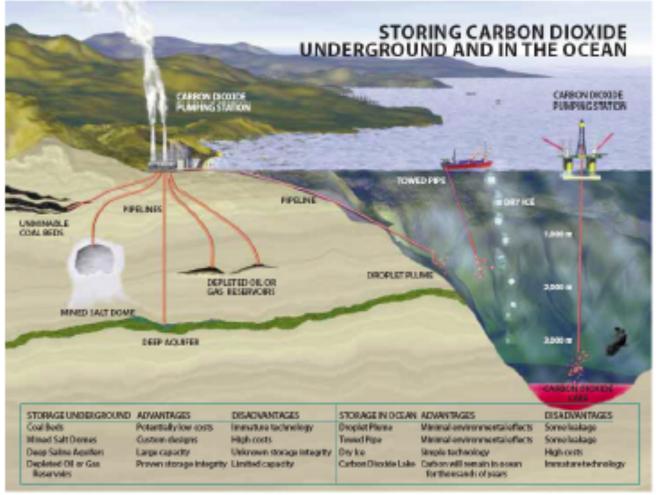
What can we do about Global Environmental Change?


Change Habits

Geo-Engineering


- Reduce emissions

- Human ingenuity


Change Habits

Geo-Engineering

Where to Place the Sequestered Carbon?

STORAGE SITES for carbon disoids in the ground and deep sea - new contributes to climate change. The various options must be doubl help keep the grounds use gas out of the atmosphere where it scrutinized for cost, safety and potential environmental effects.

CO₂ Capture and Storage (CCS) Costs:

CCS component	Cost range
Capture from a power plant	15-75 US\$/tCO ₂ net captured
Capture from gas processing or ammonia production	5-55 US\$/tCO ₂ net captured
Capture from other industrial sources	25-115 US\$ACO ₂ net captured
Transportation	1-8 US\$/tCO ₂ transported per 250km
Geological storage	0.5-8 US\$/tCO ₂ injected
Ocean storage	5-30 US\$/tCO ₂ injected
Mineral carbonation	50-100 US\$ACO2 net mineralized

Cost of capture: \sim \$54 / ton CO₂ × 9.1 × 10⁹ tons C / yr = \$491 billion

Present cost of fossil fuel: \$ 103 / barrel = \$889 / ton

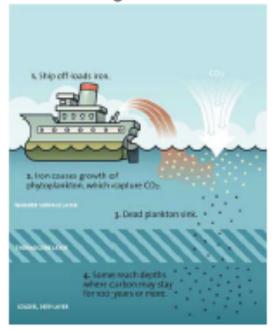
World GDP, 2010: \$63.1trillion CO₂ capture= 0.8 % of world GDP = 6 % of cost, barrel of oil Û

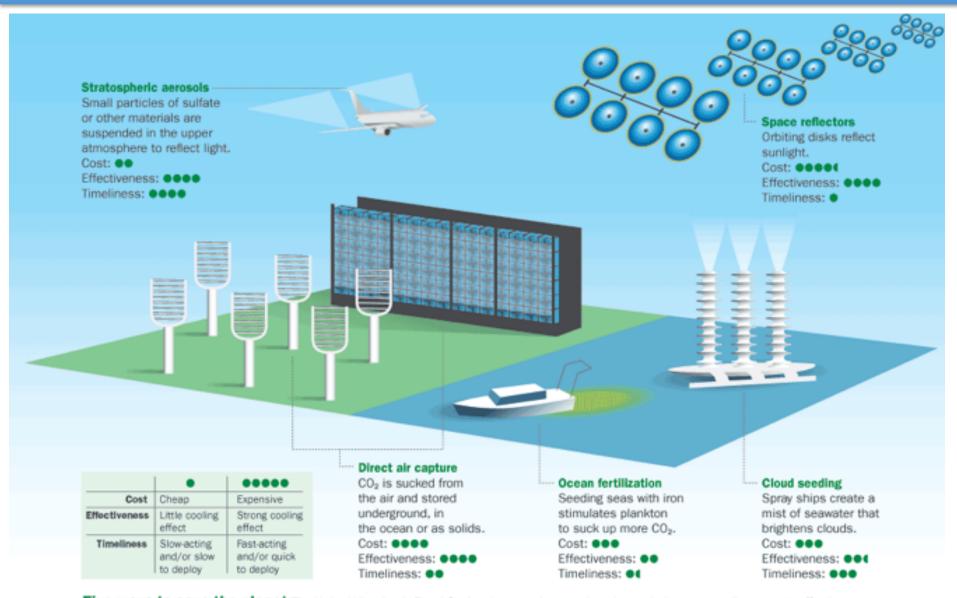
~\$45/ ton

~\$4.5/ ton

~\$4.5/ ton

Ross & Tim back of the envelope analysis




INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC)

Sequestration of CO₂ from the Atmosphere: Oceanic Biology

- Iron's importance to phytoplankton growth and photosynthesis in the ocean dates back to the 1930s, when English biologist Joseph Hart speculated that the ocean's great "desolate zones" (areas apparently rich in nutrients, but lacking in plankton activity or other sea life) might be due to an iron deficiency
- This observation has led to speculation by numerous scientists that "tanker loads" of iron powder, deposited in the right place and time, would increase oceanic dissolved iron content enough to turn these "desolate regions" into oceanic biological havens

Five ways to save the planet The United Kingdom's Royal Society has rated geoengineering techniques according to cost, effectiveness (cooling power) and timeliness (considering both how quickly a technology could be deployed and how fast it would cause cooling).

Modeling & Responding to Climate Change

Gloom & Doom of Climate Change

- sea level rise, drought, floods, severe weather, disease

What Can Be Done?

- change behavior
- geo-engineering

Modeling & Responding to Climate Change

Gloom & Doom of Climate Change

- sea level rise, drought, floods, severe weather, disease

What Can Be Done?

- change behavior
- geo-engineering

1	Spentzos, Niko Ragosta, Alyssa Rowe, Brenny Ryng, Maggie	6	Boden, Bryan Fernandes, Dominic Wilner, Jeremy	11	Olowoporoku, Elizabeth Schuelke, Dylan Delisle, Jordan
2	Murphy, Elizabeth	7	Marriott, Jacq Chen, Vince Gonzalez, Jescenia Yanaros, Michelle	12	Peccia, Joe Gorman, Jessie Sanchez, Andrew Johanning, Nathan
3	Duong, Jasmine Schram, Emma Coppola, Domenic Goldthwaite, Leo	8	Richard, Gavin Punsalan, Christopher Courage, Sean Smith, Joe	13	Blais, Abby Corbin, Rich DeCastro, Michael Smith, Jess
4	Messier, Chris Riel, Hannah Fordham, Taylor Pinkrah, Michael	9	Sylvia, Lindsay Grande, Payton Smith, Juliette Bademosi, O.J	14	Phomsouvan, Howie Palmer, Ben Day, Jack Adutwum, Kwa
5	Tissiere, Sean Brocks, Alexandra Bayne, Patrick Porreca, Nicholas	0	Okokon, Itoro Marriott, Rachel Tessier, Curtis Filippini, Joe		

MacDonald, Madison

Garvey, James

Tarczuk, Garrett

Global Warming

- recreation (no skiing projects)
- heat waves
- shifting ecosystems

Sea Level Rise Impacts

- U.S. military
- Pacific Islands
- Florida, Virginia, Rhode Island
- recreation

Extreme Weather Occurrence

- lake effect storms
- nor'easters
- hurricanes
- blizzards
- droughts

Corporate Globalization

- environmental protection differences between countries
- cheap labor and affordability of goods
- likelihood of armed conflicts
- cultural differences
- sharing of information
- growth of developing countries

Ecosystem Disruption

- plants (kudzu, Japanese barberry)
- animals (zebra mussels, lionfish, snakehead, pythons, feral hogs)
- insects (emerald ash borers, nutria, stink bugs

Expanding Disease Range/Occurrence

- Mosquito-borne (Zika, Malaria, West Nile, Dengue Fever)
- Anthrax
- Tick-borne diseases (Babesia, Lyme)
- Cholera